

A Tale of Two Gravities

Jason H. Bowman Boston College Xiaoping Chen Nanyang Technological University Ben G. Li University of Massachusetts Lowell

June 2020

Department of Economics University of Massachusetts Lowell <u>http://www.uml.edu/economics</u> Twitter: @uml_econ Phone: 978-934-2780

A Tale of Two Gravities*

Jason H. Bowman¹, Xiaoping Chen², and Ben G. Li³

¹Department of Economics, Boston College, Chestnut Hill, Massachusetts ²School of Economics and Management, Harbin Institute of Technology (Shenzhen), Guangdong, China ³Department of Economics, University of Massachusetts, Lowell, Massachusetts

Abstract

The flows of traded goods across countries are known to follow a gravity pattern: their volumes are greater between countries that are larger in size and closer to each other. We find a similar pattern in the flows of territories across countries between 1870 and 2008. During this period, countries experienced inflows and outflows of territories, mirroring the international flows of goods. We find three other pieces of critical evidence supporting that the two flows interact through similar economic motives. Our findings illustrate the usefulness of international trade models for understanding international politics.

JEL codes: F51, F15, P16

Keywords: Gravity, geopolitics, international security, globalization

1 Introduction

Throughout history, goods have flowed across countries to balance supply and demand. Territories have likewise flowed. Unlike goods, territories flow only in terms of sovereignty, but like goods, their flows are driven by the decisions of rational actors. In peaceful times, countries redraw borders in exchange for economic and political benefits. In times of war, countries fight each other for territories they covet. In interim periods, following war and before peace is established, countries negotiate treaties to convert territories they occupied in the war into equivalent interests.

This paper aims to rationalize the bilateral territory flows across countries. We find that the gravity model, originally built for modeling the goods flows across countries, also explains territory flows. As a namesake of Newton's third law, the gravity model predicts that the volumes

^{*}Corresponding author: Ben G. Li, Email: berAddessa Department of Economics, University of

Massachusetts, Lowell, MA 01854. We thank the Co-editor, anonymous reviewers, Jim Anderson, Keith Head, Mathias Thoenig, and participants at several seminars for their comments. All remaining errors are ours. The authors received no financial support for this research.

of goods flows are greater between countries that are larger in size and closer to each other. This enlightens us in two ways. One, there is an extant general equilibrium tool for modeling country sizes across the globe. Two, applying a tool designed for studying goods flows to the study of territory flows is more than analogy. The trade of goods and the reshuffle of territories have evolved hand in hand since the time of Christopher Columbus.

The gravity of goods informs the gravity of territories. We apply the gravity model to the territory flows that occurred between 1870 and 2008, where a territory flow refers to a territory whose sovereignty transitions from one country to another. Territory flows turn out to be more frequent between countries that are larger in size and closer to each other. The pattern is robust to controlling for common borders, languages, and legal origins, such that it cannot be attributed plainly to border disputes among world powers resulting from historical, cultural, or ethnic conflicts. The pattern holds for three different subperiods (1870-1909, 1910-1949, and 1950-2008), such that it endures across varying global political landscapes and climates.

Of course, having a gravity pattern does not necessarily mean that the pattern is related to international trade. A despotic king who randomly shoots missiles abroad to expand his domain would be most likely to land territories of nearby large countries. As in this dartboard metaphor, international incidents, including economic, political and military ones, obey the law of large numbers and attenuate in likelihood over space to a large extent. In addition to the gravity of territories itself, we find that

- (i) The two flows remain positively associated, with gravity variables (i.e. country sizes and trade costs) held constant.
- (ii) Bilateral goods flows rise before the occurrence of territory flows between two countries and decline afterward.
- (iii) The duration of zero goods flows is shorter between countries with territory flows than those without.

These three additional evidences uniquely indicate an interplay between the two types of flows, including cross-sectionally (evidence (i)), over time (evidence (ii)), and in terms of zero-flows (evidence (iii)).

This paper illustrates the usefulness of international trade models for understanding international politics. The evidence (i) above reflects the multilateral nature of bilateral economic and political relations. The recent gravity-model literature, led by Anderson and van Wincoop (2003), emphasizes the remoteness of a country with the rest of the world in determining its bilateral trade flows with every trade partner. Like their gravity equation for goods, our gravity equation for territories is also extended with a "gravitas" term. That is, the same distance may have very different geopolitical implications for country pairs with different locations within the world's economic geography. The evidence (ii) above makes use of the *tetrad* method developed by Head, Mayer, and Ries (2010). Since every country has time-varying fixed effects that influence their trade flows with every trade partner in every period, there are a huge number of fixed effects that need to be treated structurally. Their method matches our econometric needs. The evidence (iii) above connects to the fact that the potential trade volume between two countries has to be sufficiently large to be observed as positive (Helpman, Melitz, and Rubinstein, 2008). Our findings support the idea of the selection of destinations driven by observable gravity variables.

This paper is also related to the political/public economics studies that seek to understand modern countries (known as nation states), including their origins, capacities and efficient sizes.¹ Several studies in this literature also involve international trade, including Alesina, Spolaore, and Wacziarg (2000, 2005), Bonfatti (2017), Grossman and Iyigun (1995, 1997), and Gartzke and Rohner (2011). Their focuses are on *intra*national tradeoffs and compromises, rather than *inter*national interactions. Unlike this strand of the literature, our study focuses on international interactions.

It should be noted that, as in the two literatures above, the leading actors in this paper are countries rather than territories. Our data sources offer little information on the territories that "flowed." It is even harder to find data on territories that did not flow. We treat countries as collections of symmetric territories. Relatedly, this study does not examine independence of territories (i.e. territories of a given country become independent countries), even though the mechanism featured in our framework is applicable to the analysis of independence.

The connection between territories and trade has received continual attention from social scientists. Earlier economists prominently noted the interplay between territories and goods. Ricardo (1817) disagreed with Smith (1776) on the welfare implications of pursuing foreign territories and trading with them, and Marx (1867, 1885, 1894) and Hobson (1902) discussed extensively how territorial expansions benefit and harm capitalist economies. It was scholars in other social sciences who followed this line of exploration, such as the relation between fur trade and the Alaska Purchase (Haycox, 2002), and the role of Hong Kong as an entrepôt in its handover from the United Kingdom to China (Cheung, 1998). We are revisiting an area explored by early economists, which is now a topic of interest within the social sciences.

The rest of the paper is organized as follows. In Section 2, we present a conceptual framework, where testable hypotheses are developed. In Section 3, we describe the data used in our study. In Section 4, we report our empirical results. In Section 5, we conclude.

¹See Ang (2015), Bates, Greif, and Singh (2002), Carneiro (1970), Hobbes (1651), Tilly (1985), and de la Sierra (2020) on the origins of states; Aghion, Persson, and Rouzet (2019), Alesina and Reich (2015), Besley and Persson (2009), and Iyigun, Nunn, and Qian (2017) on state capacities; and Alesina and Spolaore (1997), Alesina and Spolaore (2006), Brennan and Buchanan (1980), Desmet, Le Breton, Ortuño-Ortín, and Weber (2011), and Friedman (1977) on efficient state sizes.

2 Conceptual Framework

2.1 A Model of Two Gravities

Consider a world with *N* symmetric territories, indexed by v = 1, 2, ..., N. Every territory v is endowed with a unit of population and a unit of a distinct good. We also use v to index the territory's good. The territories in the world are divided into *J* countries. Countries, indexed by j = 1, 2, ..., J, have asymmetric sizes. Country *j* has N_j territories, so that $\sum_{j=1}^J N_j = N$. When denoting a set, *N* represents the collection of all territories in the world ("the world" for short). Similarly, N_j , when denoting a set, represents all territories in country *j* ("country *j*" for short). Since every territory has a unit of population, a country's population size L_j is in proportion to its number of territories: $L_j = \delta N_j$ for any *j*, with δ normalized to unity.

The goods are consumed by local residents. Local residents at every territory v' have the following utility function

$$U_{v'} = \left(\sum_{v \in N} x_{vv'}^{\rho}\right)^{1/\rho}, \ 0 < \rho < 1,$$
(1)

where $x_{vv'}$ is the quantity of the good from territory v consumed at territory v'. We define $\sigma \equiv 1/(1-\rho)$, which is the elasticity of substitution. Consider territory v in country i and territory v' in country j. If the price of a good at its origin v is p_v , the delivery price at destination v' is $t_{ij}p_v$, where t_{ij} is the trade cost. By assumption, trade within a country is costless, whereas international trade is costly. That is, $t_{ii} = t_{jj} = 1$ for any i or j, and $t_{ij} > 1$ for any $i \neq j$. Following Anderson and van Wincoop (2003), we derive a gravity equation for goods (see Online Appendix A1 for derivation):

$$X_{ij} = \sum_{v \in N_i} \sum_{v' \in N_j} p_v x_{vv'} = \underbrace{N_i \times N_j \times t_{ij}^{1-\sigma}}_{Gravity} \times \underbrace{\frac{q_i h_j}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}}_{Gravitas},$$
(2)

where Π_i (P_j) is the price index of country *i* (country *j*), q_i (h_j) is the value of territory-level endowment in country *i* (country *j*), and $q = \sum_{v' \in N} q_{v'}$ denotes the world's total income. Intuitively, larger countries have more territories, and therefore have stronger demands and supplies. Meanwhile, countries that have lower bilateral trade costs trade more with each other. The gravitas term refers to the fact that the same bilateral trade cost penalizes bilateral trade differently, depending on the locations of the two countries within the world's economic geography.

There are two dates in every time period. Goods flow across countries on date 1, while territories flow across countries on date 2. Territory flows are led by politicians. On date 2, every territory is assigned two politicians, who have equal competences and chances to be in power. One of them represents local export interests, seeking to let her territory join foreign territories where her territory's local goods have large market shares, while the other represents local import interests, seeking to bring foreign supplier territories into her (territory's) country.

We henceforth refer to the politician who represents local export interests as the *out-politician*, and the politician who represents local import interests as the *in-politician*.

First consider the out-politician. Suppose that the out-politician of territory $v \in N_i$ becomes in power. As a politician, she weighs both economic and non-economic considerations. Her economic consideration, in deciding whether to join with territory v', centers on the market share of territory v' within her territory's sales on date 1. The market share, which is equal to

$$m_{vv'}^{out} = \frac{\left(\frac{p_v t_{vv'}}{P_{v'}}\right)^{1-\sigma} h_{v'}}{\sum_{v' \in N} \left(\frac{p_v t_{vv'}}{P_{v'}}\right)^{1-\sigma} h_{v'}} = \frac{\left(\frac{t_{ij}}{P_j}\right)^{1-\sigma} \frac{h_j}{q}}{\sum_{v' \in N} \left(\frac{t_{ij}}{P_j}\right)^{1-\sigma} \frac{h_j}{q}} = \frac{\left(\frac{t_{ij}}{P_j}\right)^{1-\sigma} \frac{h_j}{q}}{\Pi_i^{1-\sigma}},$$
(3)

represents the greater lobbying powers of the local exporters (at origin v) and their foreign customers (at destination v'). Her non-economic consideration, including bilateral linkages between territories v and v' in terms of history, culture and ethnicity, is represented by a stochastic term $\mu_{vv'}^{out}$. $\mu_{vv'}^{out}$ is independently and identically distributed across territory pairs, following a type-1 extreme value distribution:²

$$F(\mu) = \exp(\exp(-\mu)). \tag{4}$$

To integrate the above economic and non-economic considerations, we let the objective function of the out-politician of territory v be

$$W_{vv'}^{out} = \ln m_{vv'}^{out} + \mu_{vv'}^{out}.$$
 (5)

Here, a logarithmic function is applied to $m_{vv'}^{out}$ such that the economic and non-economic considerations are integrated in percentage terms.³ When the out-politician of territory v is in power, she chooses to join the territory v' that brings the highest $W_{vv'}^{out}$. Then the probability for territory v to join territory v' (a territory flow denoted by $Z_{vv'} = 1$) can be derived (see Online Appendix A2 for derivation):

$$\operatorname{Prob}^{out}(Z_{vv'}=1) = t_{ij}^{1-\sigma} \times \frac{h_j}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}.$$
(6)

Thus, the expected territory flow from country *i* to country *j* equals

$$Z_{ij}^{out} = \sum_{v \in N_i} \sum_{v' \in N_j} \operatorname{Prob}^{out}(Z_{vv'} = 1) = \underbrace{N_i \times N_j \times t_{ij}^{1-\sigma}}_{Gravity} \times \underbrace{\frac{h_j}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}}_{Gravitas (outbound)},$$
(7)

which has a similar form as the previous gravity equation (2) for goods.

³Transforming $W_{vv'}$ monotonically as $e^{W_{vv'}^{out}} = m_{vv'}^{out} e^{\mu_{vv'}^{out}}$ would not make any difference to the following discussion.

²The type-1 extreme value distribution is extensively used in statistics to model extreme events, such as maximum rainfall and drought. It is also widely used in econometrics (e.g. McFadden (1974) and Train (2003)). The use of extreme-value distributions is common in economics, such as Eaton and Kortum (2002) on trade and Alvarez and Lucas (2007) on economic growth.

The intuition behind equation (7) is as follows. A larger country tends to lose more territories because it has more territories to lose. So does it gain more territories because it also has a higher probability of attracting foreign territories. Given the sizes of two countries, the lower their bilateral trade costs are, the more likely it is for them to have territory flows, because they are more connected economically through the aforementioned market share. Just as in the gravity equation for goods, there is also a gravitas term here, representing the fact that trade costs matter not only absolutely but also relatively. Namely, the same t_{ij} that discourages territory flows within one pair may encourage territory flows within another pair, depending on the locations of the two sides within the world's economic geography. This offers a geopolitical implication of the gravitas term in the gravity equation (2) for goods.

Now turn to the in-politician. She also has economic and non-economic considerations. To avoid repeating some of the equations above, let us consider the in-politician of territory $v' \in N_j$ rather than the in-politician of territory $v \in N_i$.⁴ Her objective function is

$$W_{vv'}^{in} = \ln m_{vv'}^{in} + \mu_{vv'}^{in}, \tag{8}$$

where

$$m_{vv'}^{in} = \frac{(p_v t_{vv'})^{1-\sigma}}{\sum_{v \in N} (p_v t_{vv'})^{1-\sigma}},$$
(9)

and $\mu_{vv'}^{in}$ follows the same distribution in equation (4). Then we can derive (see Online Appendix A2 for derivation)

$$\operatorname{Prob}^{in}(Z_{vv'}=1) = t_{ij}^{1-\sigma} \times \frac{q_i}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}.$$
(10)

So, the expected territory flow from country *i* to country *j* equals

$$Z_{ij}^{in} = \sum_{v \in N_i} \sum_{v' \in N_j} \operatorname{Prob}^{in}(Z_{vv'} = 1) = \underbrace{N_i \times N_j \times t_{ij}^{1-\sigma}}_{Gravity} \times \underbrace{\frac{q_i}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}}_{Gravitas (inbound)}.$$
(11)

The intuition behind equation (11) is similar to that behind equation (7).

Since the out-politician and the in-politician have equal chances of being in power, the total expected territory flow from country *i* to country *j* equals

$$Z_{ij} = (Z_{ij}^{out} + Z_{ij}^{in})/2 = \underbrace{N_i \times N_j \times t_{ij}^{1-\sigma}}_{Gravity} \times \underbrace{\frac{q_i + h_j}{2q} \times \frac{1}{\prod_i^{1-\sigma} \times \frac{1}{P_j^{1-\sigma}}}}_{Gravitas}.$$
(12)

In summary, in every time period, goods are endowed and flow across countries following equation (2), then territories flow across countries following equation (12). The territories of all coun-

⁴Note that this in-politician's competitor is the out-politician of territory $v' \in N_j$ rather than the out-politician of territory $v \in N_i$.

tries change from time to time, caused by non-economic shocks both statically (through shocks $\mu_{vv'}^{out}$ and $\mu_{vv'}^{in}$ themselves) and dynamically (through market-share changes resulting from territory changes). The dynamics do not rely on any intertemporal decision. This model of two gravities is robust and flexible in several ways, which are discussed in Online Appendix A3.

2.2 Hypotheses for Testing

The model above is a deliberately simple one, built to inform our empirical study. The gravity equation (12) for territories is our first hypothesis to test empirically:

Hypothesis 1. Bilateral territory flows follow a gravity pattern.

Although the goods-gravity equation (2) and the territory-gravity equation (12) look similar, we should be skeptical about their similarity. International incidents, to a large extent, obey the law of large numbers and attenuate in likelihood over space.⁵ The crux is thus whether the two gravity-patterned flows interact with each other through the mechanism characterized by our model. Below, we introduce three additional testable hypotheses, each of which relates to a different aspect of our model.

The gravitas terms in equations (2) and (12) exhibit a natural way to expose spurious similarity between the two flows. Specifically, we insert bilateral goods flow X_{ij} into equation (12) and control for N_i , N_j , and t_{ij} at the same time. The goods flow X_{ij} should retain some explanatory power in the territory-gravity regression, driven by the gravitas terms that appear in both equations.⁶ This is our second testable hypothesis:

Hypothesis 2A. Conditional on N_i , N_j and t_{ij} , bilateral territory flows and bilateral goods flows remain positively associated with each other.

Testing Hypothesis 2A is still inadequate for identifying the relationship between territory flows and goods flows, because there may be factors other than the gravitas terms that are omitted from both gravity equations. Lacking a natural experiment setup, we resort to the time dimension of the data. For a country *j* that takes a territory away from a foreign country *i*, the goods supplied by the gained territory are no longer counted as imports but rather as domestic trade within country *j*. Thus, a subsequent decrease in the bilateral goods flows is expected. Although territory-level exports and imports are unobservable in the data, the territory-losing side should export less to the territory-gaining side. To summarize,

⁵Recall the dartboard metaphor presented in the introduction. A despotic king who randomly shoots missiles abroad to expand his domain would be most likely to land territories of nearby large countries. Similarly, if territories launch and follow outbound hot-air balloons to find their next home country, they are most likely to join a nearby large country.

⁶By equations (2) and (12), $Z_{ij}/X_{ij} = \frac{q_i + h_j}{2q_i q_j} > 0$. So, in either log or level terms, Z_{ij} and X_{ij} are positively associated, conditional on N_i , N_j , and t_{ij} .

Hypothesis 2B. *Within a country pair known to have a territory flow, the bilateral goods flow decreases after the territory flow.*

Lastly, standard gravity equations for goods, including equation (2) and its counterparts in the international trade literature, predict positive goods flows within all country pairs, even though zero goods flows are prevalent in bilateral trade data. Having zero goods flows are less likely if the two countries have more potential trade with each other. Equations (2) and (12) show that territory flows are more likely to occur between countries that have greater potential goods flows, so we expect that, conditional on seeing a bilateral territory flow within a pair, observing a zero goods flow between them is less likely. The above reasoning is phrased as

Hypothesis 2C. *Zero goods flow within a country pair ends sooner if the country pair is known to have a territory flow.*

Notice that Hypothesis 2B and Hypothesis 2C are not contradictory. Hypothesis 2B is concerned with countries that have both goods and territory flows, and contends that their goods flows will decline after the territory "flows" in terms of sovereignty. Hypothesis 2C is concerned with the country pairs that do not (yet) have goods flows. Some of these pairs have territory flows while others do not, and Hypothesis 2C contends that those having territory flows will start having goods flows sooner.

3 Data

Our major data source is the Correlates of War (COW) Project, which is a database established for international relations studies.⁷ Datasets in the COW database are contributed by different researchers. Two datasets in the database constitute our working sample: the territorial change dataset compiled by Jaroslav, Schafer, Diehl, and Goertz (1998), hereafter referred to as the JSDG dataset, and the bilateral trade dataset compiled by Barbieri, Keshk, and Pollins (2009).⁸ Both datasets are updated from time to time using a consistent format mandated by the COW Project. The JSDG dataset covers the years 1816-2008, while the bilateral trade dataset covers the years 1870-2009. We use their overlapping years 1870-2008 as the time span of our working sample.⁹ We match the above country pair-year level data with country-year level geographic and socioe-conomic data from two sources: the CEPII gravity dataset and the National Material Capabilities dataset (see Online Appendix A4 for details).

There are in total 203 countries in our working sample, but not all of them coexisted in a given time period. There are 37,455 co-existing pairs, smaller than $203 \times 203 = 41,209$. Among

⁷The website for the COW Project is http://www.correlatesofwar.org

⁸The majority of the post-WWII data in Barbieri et al. (2009) are from the International Monetary Fund's *Direction of Trade Statistics*. See their paper for detailed sources.

⁹The non-overlapping years 1816-1869 do not have goods-flow data. Also, it is difficult to find corresponding country-level geographic and socioeconomic data for that period.

the 37,455 country pairs (denoted by *IJ*), 17,403 pairs have goods flows (denoted by IJ^{gd}) and 243 pairs have at least one territory flow (denoted by IJ^{tr} , see Table A1 for a list of them). Correspondingly, IJ^{-tr} (IJ^{-gd}) represent the pairs that never have territory (goods) flows. Thus,

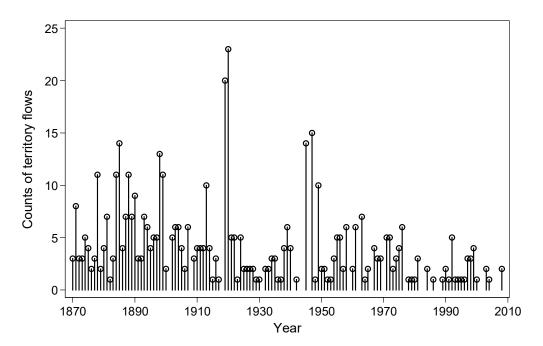
$$IJ = IJ^{tr} \cup IJ^{-tr} = IJ^{gd} \cup IJ^{-gd}.$$
(13)

All pairs in these sets have corresponding years. To incorporate the year dimension, we add a letter *T* to their notations. For example, IJT represents all coexisting country pairs and their coexisting years. In addition, we define $IJ^{tr}T^+$ as the year(s) when the pairs in IJ^{tr} have ongoing territory flows. Since the pairs in IJ^{tr} have territory flows only during a few (usually one) years, we denote the rest of the years (i.e. the "idle" years) by $IJ^{tr}T^-$. Combining the two types of years, we have $IJ^{tr}T = IJ^{tr}T^+ \cup IJ^{tr}T^-$. Correspondingly, for goods flows, we have $IJ^{gd}T = IJ^{gd}T^+ \cup IJ^{gd}T^-$. For completeness, we also define $IJ^{-tr}T$ and $IJ^{-gd}T$ for the aforementioned pairs that never have territory and goods flows, where the *T* represents simply the pairs' coexisting years. To summarize,

$$IJT = \underbrace{IJ^{tr}T^{+} \cup IJ^{tr}T^{-}}_{IJ^{tr}T} \cup IJ^{-tr}T = \underbrace{IJ^{gd}T^{+} \cup IJ^{gd}T^{-}}_{IJ^{gd}T} \cup IJ^{-gd}T.$$
(14)

Table 1 reports the summary statistics associated with IJT, $IJ^{tr}T$, and $IJ^{gd}T$, respectively. **Figure 1** demonstrates the frequency of territory flows over years.

Two notes on the territory flows should be made at this point. First, we have little information on the "flowed territories." Each JSDG record refers to a territory incident where a country loses a territory to another country, but the exact name of the lost territory is usually unavailable.¹⁰ For example, the United States and the United Kingdom redrew part of Alaska's borders in 1903 (JSDG ID: 399). The flowed territory, despite being part of the contemporary state of Alaska, did not have a name. Remember that our research interest is in the countries on the two sides of the territory flows, rather than the flowed territories themselves. Thus, knowing the country pairs where territory flows occur, as reported by the JSDG dataset, is sufficient for our needs.


Second, without knowing the exact flowed territories, we do not know whether they supplied goods, what goods they supplied, and with whom they traded. It is possible that the territory v who joins territory v' has little economic interests in territory v' and vice versa. It is even possible that territory v does not produce goods at all. The territory flow might happen only owing to some non-economic consideration. This possibility has been taken into account by our model in Section 2.1, where the additive economic consideration and non-economic consideration in equations (5) and (8) allow any combination between the two considerations.

¹⁰As for those having names, their historical names are often different from their current boundaries. For example, "Canada" refers to different territories over time.

Table 1: Summary Statistics								
▼Variable	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev		
Sample* ►	Full	(IJT)	With territory	y flows (IJ ^{tr} T)	With goods	flows (IJ ^{gd} T		
Population, country i	29463.8	103886.6	64126.47	127689.5	52586.84	151624.		
Population, country j	As al	oove§	As ab	ove§	As ab	ove§		
Distance	7681.209	4442.782	3151.505	3816.549	6475.963	4359.925		
Iron & steel prod., country i†	4061.757	17302.52	7046.982	19976.19	8811.117	25679.96		
Iron & steel prod., country j†	As al	oove§	As ab	ove§	As ab	above§		
Primary energy consum., country i#	87822.53	352846.3	134357	406956.9	187321.8	533592.6		
Primary energy consum., country j#	As al	oove§	As ab	ove§	As ab	ove§		
Shared border dummy	0.02	0.15	0.45	0.50	0.04	0.20		
Shared language dummy	0.16	0.37	0.30	0.46	0.18	0.39		
Shared legal origin dummy	0.35	0.48	0.53	0.50	0.35	0.48		
Trade flow	308.5347	8690.964	187.9228	1462.433	825.516	14201.03		
Number of pairs	37,	455	24	3	17,4	.03		

* The covered period is 1870-2008. The three sample sizes are 1,541,968 (full), 329 (ever had territory flows), and 576,307 (ever had goods flows), respectively. The mean and standard deviations are based on non-missing values. § The full sample is based on a symmetric country-to-country matrix; therefore, means and standard deviations of either country applies to the other. † The unit is thousands of tons. # The unit is thousands of coal-ton equivalents.

Figure 1: Territory Flows since 1870

Empirical Results 4

4.1 Overview

To make the most of the above data, we organize our empirical study in the following way. Hypotheses 1 and 2A, taking the form of cross-sectional (cross-pair) gravity regressions, will be tested using the pairs that have positive goods flows, namely IJ^{gd}. This ensures that the country pairs hypothesized to have territory flows are those with known economic interests in each other. The time variations in the pairs that have zero goods flows, namely $IJ^{-gd}T \cup IJ^{+gd}T^{-}$, are not wasted. We use them in our test of Hypothesis 2C, which contends that the zero goods flow should end sooner if the two countries are known to have had a territory flow. The test of Hypothesis 2B involves the country pairs that have both goods and territory flows. Remember that goods flows are usually continual over years, while territory flows are sparse over years. Hypothesis 2B compares the within-pair goods flows across the idle years after a territory flow.

Table 2 links the previous hypotheses with their corresponding dependent variables and variations. For convenience, its last column references the tables and figures that later report corresponding results. We also test the gravity equation (2) for goods. The results, as reported in Table A2, conform to the patterns extensively documented gravity pattern in the literature.¹¹

	Table 2: Hypotheses, Dependent Variables, Data, and Results								
Нуро.	Dep. Variable	Variations in use	Tables & Figures						
1	Z_{ij}	IJ ^{tr} vs. IJ ^{-tr} given IJ ^{gd}	Tables 3-5						
2A	Z_{ij}	IJ ^{tr} vs. IJ ^{-tr} given IJ ^{gd}	Table 6						
2B	X_{ij}	Across the T^- of each pair in $IJ^{tr}T^-$	Figure 2						
2C	Zero goods flows	IJ ^{tr} vs. IJ ^{-tr} for all	Figure 3						

4.2 Hypothesis 1 Results

To test Hypothesis 1, we specify a gravity regression:

$$Z_{ii} = \exp[\alpha \ln L_i + \beta \ln L_i + \gamma \ln Distance_{ii} + \bar{\eta}' C_{ii}] \cdot \epsilon_{ii}, \qquad (15)$$

where Z_{ij} is the territory flow count from country *i* to country *j*. We use population to proxy for country sizes, which is in line with our model setup in Section 2.1 (i.e. $L_i = \delta N_i$). C_{ij} is pair-level control variables, including the indicators of sharing borders, languages, and legal origins between two countries. In some specifications, we also add country-specific control variables. ϵ_{ij} is the error term. The Poisson pseudo-maximum-likelihood (PPML) estimation is used to estimate

¹¹See Anderson (2011) and Head and Mayer (2014) for reviews.

the regression, which is known for its econometric consistency and robustness to heteroskedasticity. The PPML estimation is extensively used to estimate the gravity regressions for goods (including ours; see Table A2).¹² This count-data estimation technique fits our study well, as the multiple territory flows within pairs are recorded as counts.

The following example helps to illustrate the machinery of regression specification (15). Consider a pair of countries, country *i* and country *j*, that had two territory flows from *i* to *j* in history. The total territory flows over the sample period, which is two in this case, is the dependent variable: $Z_{ij} = 2$. The average population of country *i* (respectively, country *j*) over the sample period is used to proxy for L_i (respectively, L_j). If country *i* never lost a territory to country *j'*, $Z_{ij'} = 0$ and it is also an observation in the sample. In essence, regression specification (15) compares country pairs that have territory flows (such as the pair *i*-*j*) with country pairs that have no territory flow (such as the pair *i*-*j'*).

Notice that a given country plays the role of country *i* when it loses a territory, but plays the role of country *j* when it gains a territory. The notation (country) *i* in equation (15) is not specific to any given country but refers generally to a territory-losing country. Likewise, the notation (country) *j* refers generally to a territory-gaining country. A territory-losing country does not lose territory to every other country; similarly, a territory-gaining country does not gain territory from every other country. The absence of positive territory flows within most country pairs creates a large number of zeros in Z_{ij} . The zero and nonzero territory flows together resemble a global territory market where some countries trade territories sometimes.

According to Hypothesis 1, the expected signs of the estimated coefficients are $\hat{\alpha} > 0$, $\hat{\beta} > 0$, and $\hat{\gamma} < 0$. The estimation results are reported in column (1) of **Table 3**, which display a clear gravity pattern. When pair-level control variables C_{ij} are included in column (2), the sample size shrinks by approximately 7 percent (from 17,120 to 15,945) due to the missing data in C_{ij} . We experiment with including industrialization measures of countries *i* and *j* in columns (3)-(4). The same gravity pattern is found, and the estimated coefficients of control variables are in line with our expectation.

It should be noted that the control variables related to industrialization have positive coefficients, indicating that territory flows are more frequent between industrialized countries. This is consistent with our theory in Section 2. That is, larger economies easily attract territories to join them, but meanwhile easily lose territories to other (large) economies because they have more territories to lose. In contrast, small economies are less attractive to join, but they are also less likely to lose territories because they have fewer territories to lose. Such positive impacts of industrialization on territory flows actually serve as a good example of the gravitational forces in our theory.

We next experiment with a more conservative use of the territory-flow variations. In columns

¹²See Cameron and Trivedi (2013) for a discussion on the PPML estimator, and Silva and Tenreyro (2006) for its application to the gravity-equation estimation.

		Table 3: G	ravity of Ter	ritories				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable:†		Territo	ry flow			Territor-flov	v indicator	
ln(Population, country i)	0.665***	0.625***	0.356***	0.336***	0.594***	0.581***	0.263***	0.200**
	(0.0521)	(0.0525)	(0.0702)	(0.0932)	(0.0525)	(0.0559)	(0.0703)	(0.0911)
ln(Population, country j)	0.662***	0.597***	0.470***	0.445***	0.596***	0.545***	0.425***	0.394***
	(0.0517)	(0.0558)	(0.0753)	(0.0955)	(0.0583)	(0.0628)	(0.0817)	(0.101)
ln(Distance)	-1.165***	-0.853***	-0.820***	-0.860***	-1.304***	-0.791***	-0.691***	-740***
	(0.0753)	(0.140)	(0.152)	(0.146)	(0.0926)	(0.	(0.135)	(0.139)
▼ Time-invariant pair-level control var	iables							
Sharing border dummy		1.058***	1.029**	1.052***		1.645***	1.772***	1.746***
		(0.387)	(0.400)	(0.394)		(0.	(0.353)	(0.347)
Sharing language dummy		0.521**	0.887***	0.797***		0.798***	1.197***	1.094***
		(0.243)	(0.234)	(0.243)		(0.	(0.253)	(0.249)
Sharing legal origin dummy		0.0249	0.0944	0.0637		0.0791	0.103	0.118
		(0.244)	(0.245)	(0.242)		(0.	(0.262)	(0.246)
▼ Control variables related to industria	lization							
ln(Iron & steel prod., country i)			0.229***				0.234***	
			(0.0374)				(0.0400)	
ln(Iron & steel prod., country j)			0.120***				0.0997***	
			(0.0398)				(0.0353)	
ln(Primary energy consum., country i)				0.343***				0.402***
· ·				(0.0804)				(0.0871)
ln(Primary energy consum., country j)				0.202***				0.181**
				(0.0777)				(0.0733)
Observations	17,120	15,945	15,945	15,945	17,120	15,945	15,945	15,945

⁺ Territory flows are from country i to country j. Poisson pseudo-maximum-likelihood (PPML) estimation is used when the dependent variable is territory flow. Logit estimation is used when the dependent variable is territory-flow indicator. Robust standard errors in parentheses. *** p<0.01, ** p<0.05.

(5)-(8) of Table 3, the dependent variable is an indicator variable that represents whether there is any bilateral territory flow between the two countries: $\mathbb{I}(Z_j > 0)$, which equals 1 if and only if there is at least one territory flow from country *i* to country *j*. Using only the difference between Z > 0 and Z = 0, this specification is less driven by countries that frequently change their territories. The results are also in line with Hypothesis 1, and show expected signs of control-variable coefficients.

The L_i and L_j in Table 3 are the average populations of countries *i* and *j* over the 139 years. Country-level populations might change substantially during the time span, and the global political landscapes and climates also change over time. To address such concerns, we rerun the regressions in Table 3 by subperiod: 1870-1909, 1910-1949, and 1950-2008. Each subperiod is about 40 years in length, and the last subperiod is longer (56 years) as territorial changes were infrequent after the 1990s. The first subperiod was generally peaceful, during which there were only a few conflicts in the Western world. The second subperiod featured two world wars as well as periods of pre-war tensions and post-war territorial redistributions. The third subperiod encompassed both the cold-war decades and the subsequent two decades of globalization. The average population now refers to its average *within each period*. The results are reported in **Table 4**, which follows the structure of Table 3. Specifically, with either territory flow or territory-flow indicator as the dependent variable, we start with a regression with no control variables, then with pair-level control variables, and lastly with both pair-level control variables and industrialization-related control variables. To keep this large table compact, we simplify the control-variable panels in Table 3 into the bottom Yes/No rows in Table 4.¹³

Table 4: Gravity of Territories, by Period								
	(1)	(2)	(3)	(4)	(5)	(6)		
Dependent variable:†	Т	erritory flov	W	Territ	ory-flow ind	icator		
		Panel A: 18	70-1909					
ln(Population, country i)	0.563***	0.685***	0.643***	0.464***	0.633***	0.624***		
	(0.134)	(0.143)	(0.153)	(0.148)	(0.157)	(0.210)		
ln(Population, country j)	0.696***	0.792***	0.567***	0.674***	0.831***	0.585***		
	(0.119)	(0.129)	(0.157)	(0.145)	(0.171)	(0.210)		
ln(Distance)	-0.718***	-0.819***	-0.687***	-0.758***	-0.901***	-0.802***		
	(0.204)	(0.261)	(0.235)	(0.203)	(0.256)	(0.256)		
Observations	608	560	560	608	560	560		
		Panel B: 19	10-1949	608 560 560				
ln(Population, country i)	0.588***	0.575***	0.498***	0.614***	0.615***	0.402***		
	(0.0885)	(0.0993)	(0.172)	(0.0900)	(0.0949)	(0.142)		
ln(Population, country j)	0.515***	0.473***	0.398**	0.452***	0.421***	0.340*		
	(0.107)	(0.123)	(0.198)	(0.115)	(0.123)	(0.176)		
ln(Distance)	-1.264***	-1.052***	-0.951***	-1.377***	-1.039***	-0.887***		
	(0.135)	(0.192)	(0.214)	(0.184)	(0.229)	(0.237)		
Observations	2,674	2,444	2,444	2,674	2,444	2,444		
		Panel C: 19	50-2008					
ln(Population, country i)	0.615***	0.541***	0.266***	0.521***	0.475***	0.208**		
	(0.0957)	(0.0808)	(0.0934)	(0.0885)	(0.0877)	(0.101)		
ln(Population, country j)	0.628***	0.513***	0.714***	0.589***	0.494***	0.682***		
	(0.0878)	(0.0791)	(0.128)	(0.0935)	(0.0913)	(0.124)		
ln(Distance)	-1.084***	-0.363	-0.385	-1.112***	-0.258	-0.267		
	(0.107)	(0.227)	(0.250)	(0.109)	(0.172)	(0.181)		
Observations	17,096	15,945	15,945	17,096	15,945	15,945		
		(For all pa	anels)					
Pair-level controls	No	Yes	Yes	No	Yes	Yes		
Industrialization controls	No	No	Yes	No	No	Yes		

Table 4: Gravity of Territories, by Period

+ Territory flows are from country i to country j. Poisson pseudo-maximum-likelihood (PPML) estimation is used when the dependent variable is territory flow. Logit estimation is used when the dependent variable is territory-flow indicator. Robust standard errors in parentheses. *** p<0.01, ** p<0.05.

As shown in Table 4, the by-subperiod results are highly similar to the results in Table 3, indicating that the gravity equation for territories applies to different global political landscapes

¹³We use iron & steel production as the industrialization measure in Table 4. Using primary energy consumption instead does not alter the findings.

and climates. The only exception is that the coefficient of bilateral distance in Panel C is no longer significant when pair-level control variables are included (see columns (2)-(3) and (5)-(6) in the panel). The statistical insignificance stems from the fact that most territorial changes after WWII occurred between countries with geographical proximity who had intertwined cultures and histories. Therefore, once the pair-level control variables (i.e. sharing-border dummy, sharing-language dummy, and sharing-legal-origin dummy) are included in the regression, there remains little variation for the coefficient of bilateral distance to capture.

Not all territory flows occurred peacefully. Out of the 329 territory flows in our sample, 55 involved military conflicts.¹⁴ They occurred within 46 country pairs, out of the 243 country pairs with positive territory flows mentioned in Section 3. We run gravity regression (15) using these 46 country pairs. The results are reported in Panel A of **Table 5**.¹⁵ The previous gravity pattern remains (i.e. $\hat{\alpha} > 0$, $\hat{\beta} > 0$, and $\hat{\gamma} < 0$). Military conflicts usually result from border-conflict escalations, a fact that limits the variations in the bilateral distance variable. As a result, the coefficient of bilateral distance is statistically insignificant. Panel B of Table 5, corresponding to territory flows without military conflicts, accounts for the majority of the previous sample and produces the same findings as Table 3.

The robustness of the territory-gravity pattern to the occurrence of military disputes is consistent with our model in Section 2.1. The metaphorical politicians with objective equations (5) and (8) represent a wide range of political powers, including warlords, colonists, populist leaders, and local monopolies, with economic interests in trade. Their means of acquiring territories are not limited to peaceful ones. For example, colonists in early industrialized economies, when having import interests in obtaining inputs from a foreign territory, might launch wars to take the territory by force. Countries that lost territories could be either other early industrialized economies (such as the British Empire) or pre-industrialized economies (such as the Chinese Empire). The fact that larger and closer economies had more territory flows with each other is rationalized by our territory-gravity model, regardless of whether the flows occurred through voluntary exchange or military occupation. Our territory-gravity model does not prescribe the tactics used by countries. The gravity pattern predicted by our model receives similar support from the data in both panels, suggesting that the outcomes of different tactics conform to similar underlying economic motives.¹⁶

¹⁴In the JSDG dataset, there is an indicator variable "military conflict" that equals 1 if the territory flow involves a military conflict (it equals 0 otherwise). The military conflict is required to be between organized forces of both sides. Unorganized violence such as riots was not counted as military conflicts in their dataset.

¹⁵Only the PPML estimation is used, because these pairs all have territory flows with each other such that there is no variation usable for the logit model estimation.

¹⁶The economic motives underlying military conflicts are beyond the scope of our current research. They may or may not be related to trade (see Martin et al. (2008), for example).

	(1)	(2)	(
	Territory f	low from co	untry to
Dependent variable:		country j	
Panel A: With Wars			
ln(Population, country i)	0.317***	0.336***	0.272*
	(0.0836)	(0.0821)	(
ln(Population, country j)	0.203**	0.223***	0.368**
	(0.0885)	(0.0838)	(
ln(Distance)	-0.0481	-0.0672	-
	(0.160)	(0.148)	(
Observations	46	44	44
Panel B: Without Wars	5		
ln(Population, country i)	0.541***	0.503***	0.349***
	(0.0604)	(0.0668)	(0.115)
ln(Population, country j)	0.574***	0.579***	0.150*
	(0.0532)	(0.0587)	(0.0901)
ln(Distance)	-1.126***	-0.838***	-0.858***
	(0.0838)	(0.166)	(0.187)
Observations	17,074	15,901	15,901
(For both panels)			
Pair-level controls	No	Yes	Yes
Industrialization controls	No	No	Yes

Table 5: Gravity of Territories, with and without Military Conflicts

Poisson pseudo-maximum-likelihood (PPML) estimation is used. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

4.3 Hypothesis 2A Results

We now examine the relationship between territory and goods flows. Hypothesis 2A contends that, conditional on sizes and bilateral trade costs, bilateral goods flows should still have explanatory power in the territory-gravity model. Unlike goods flows, territory flows usually have only one direction. For example, the United Kingdom lost territories to the United States in 1872 and 1903, but the United states never lost any territory to the United Kingdom during our sample period. As a result, in terms of territory flows, the United Kingdom played the role of country *i* but never played the role of country *j*. When the goods and territory flows are merged, we keep their directions identical in that the goods flows from the United Kingdom to the United States), whereas the goods flows from the United States to the United Kingdom have no corresponding territory flows. This practice — merging outbound goods with outbound territories — is consistent with our model setup in Section 2.1. We also reverse the alignment and rerun the regressions as a comparison. The results are reported in **Table 6**, where the goods-exporters lose

Table 6: Inserting Goods into the Gravity Equation for Territories								
	(1)	(2)	(3)	(4)	(5)	(6)		
Dependent variable:+	Territory flow			Territ	Territory-flow indicator			
Panel A: Te	erritory flows	s and goods	flows are in	the same di	rection			
ln(Population, country i)	0.441***	0.419***	0.346***	0.347***	0.323***	0.215***		
	(0.0772)	(0.0730)	(0.0856)	(0.0609)	(0.0606)	(0.0745)		
ln(Population, country j)	0.447***	0.405***	0.447***	0.367***	0.307***	0.380***		
	(0.0764)	(0.0710)	(0.0865)	(0.0772)	(0.0763)	(0.0873)		
ln(Distance)	-0.898***	-0.619***	-0.628***	-0.948***	-0.458***	-0.474***		
	(0.114)	(0.157)	(0.158)	(0.102)	(0.138)	(0.140)		
ln(Goods flows)	0.378***	0.400***	0.363***	0.399***	0.427***	0.383***		
	(0.0572)	(0.0557)	(0.0743)	(0.0505)	(0.0517)	(0.0709)		
Panel B: Terr	itory flows a	and goods fl	ows are in th	ne opposite d	direction			
ln(Population, country i)	0.451***	0.409***	0.510***	0.348***	0.293***	0.437***		
	(0.0834)	(0.0775)	(0.0912)	(0.0740)	(0.0727)	(0.0863)		
ln(Population, country j)	0.436***	0.425***	0.307***	0.375***	0.362***	0.190**		
	(0.0740)	(0.0687)	(0.0843)	(0.0680)	(0.0666)	(0.0781)		
ln(Distance)	-0.920***	-0.667***	-0.680***	-0.959***	-0.505***	-0.527***		
	(0.116)	(0.153)	(0.152)	(0.103)	(0.133)	(0.134)		
ln(Goods flows)	0.385***	0.396***	0.378***	0.414***	0.431***	0.405***		
	(0.0586)	(0.0577)	(0.0741)	(0.0497)	(0.0507)	(0.0660)		
		(For both p	oanels)					
Observatitons	17,120	15,945	15,945	17,120	15,945	15,945		
Pair-level controls	No	Yes	Yes	No	Yes	Yes		
Industrialization controls	No	No	Yes	No	No	Yes		

(respectively, gain) territories in Panel A (respectively, Panel B)	(respectively, gain) territories in Panel A	(respectively, Panel B).
---	---------------------	--------------------------	--------------------------

Table 6: Inserting Goods into the Gravity Equation for Territories

+ Poisson pseudo-maximum-likelihood (PPML) estimation is used when the dependent variable is territory flow. Logit estimation is used when the dependent variable is territory-flow indicator. Robust standard errors in parentheses. *** p<0.01.

Three observations emerge from Table 6. First, the gravity pattern still applies; namely, countries that are larger in size and closer to each other continue to have larger territory flows with each other. Second and more importantly, the volume of trade flows has a positive and statistically significant association with territory flows, lending support to Hypothesis 2A. Lastly, altering the direction of alignment makes no remarkable difference. This is not surprising, as bilateral exports and imports have a tendency to break even although they do not have to be equal.

4.4 Hypothesis 2B Results

The test of Hypothesis 2B exploits the panel structure of the data. To guide our use of the panel data, we now add a time dimension to the gravity equation for goods (i.e. equation (2)):

$$X_{ijt} = \underbrace{N_{it} \times N_{jt} \times t_{ijt}^{1-\sigma}}_{Gravity} \times \underbrace{\frac{q_{it}h_{jt}}{q_t} \times \frac{1}{\Pi_{it}^{1-\sigma}} \times \frac{1}{P_{jt}^{1-\sigma}}}_{Gravitas}.$$
(16)

Apparently, the gravitas term involves numerous *it*- and *jt*-specific effects and therefore it is impossible to use dummy variables to absorb all of them. We use the *tetrad* technique developed by Head, Mayer, and Ries (2010). Their technique can be applied to any gravity equation (for goods) that has a gravitas term, as it double-deflates the trade volume into a ratio to generate a gravitas-free dependent variable:

$$r_{ijt|k,l,t} \equiv \frac{X_{ijt}/X_{ikt}}{X_{ljt}/X_{lkt}},\tag{17}$$

where country *k* is a reference importer, and country *l* is a reference exporter. Applying it to our context, the trade ratio $r_{ijt|k,l,t}$ equals

$$r_{ijt|k,l,t} = \left(\frac{t_{ijt}/t_{ikt}}{t_{ljt}/t_{lkt}}\right)^{1-\sigma}.$$
(18)

Now, by using $r_{ijt|k,l,t}$ instead of X_{ijt} as the dependent variable, the gravitas term is no longer a concern. Also removed are (1) all country-specific characteristics, whether time-varying (such as country sizes) or not, and (2) all time-invariant pair-specific characteristics such as the dummies for language, border, and legal-origin sharing.

The variations that remain in $r_{ijt|k,l,t}$ are the bilateral relative share in trade volumes, namely the share of country j in country i's total exports and the share of country i in country j's total imports. Recall equation (9) that represents the market share of any origin $v \in N_i$ within a given destination $v' \in N_j$. From the perspective of destination v', country i now has a smaller (supply) share in the market. This applies equally to every destination territory in country j, thereby penalizing the goods flows from country i to country j. Meanwhile, from the perspective of origin v, country j now has a smaller (demand) share in the market. This applies equally to every remaining origin territory in country i, also penalizing the goods flows from country i to country j.

Notice that there are other contemporary changes on both the export side and the import side, such that the reference countries are introduced to deflate the volume. Take the reference exporter l. Unlike exporter i, exporter l does not lose a territory to importer j. So the change to exporter i does not apply to exporter l. By taking the ratio, the forces that affect all countries that export to country j cancel out each other. Similarly, the forces that affect all countries that import

from country *i* also cancel out each other through the ratio. In particular, notice that country *i* (country *j*) becomes smaller (larger) in size as a result of the territory flow, an effect that is absorbed by the double-deflation and thus does not affect $r_{ijt|k,l,t}$.

We use the rest of the world as reference countries l and k. Following Head et al. (2010), we construct a dummy variable $DUMa_{ijt}$ that represents the *a*-th year, a = 1, ..., 120, after countries i and j have a territory flow.¹⁷ As noted in Table 2, the variations used here stem from comparing $r_{ijt|k,l,t}$ across the years of each pair in IJ^{tr} after the territory flow. A related question is whether the territory-gaining country should have an increase in bilateral imports from the territory-losing country before the territory flow occurs. Conceivably, an increase in the goods flow incentivizes the territory flow through market shares (see equations (3) and (9)). Exploring this possibility is easy given the above estimation setting designed for the years after the territory flow. The only additional work is to construct a dummy variable $DUMb_{ijt}$ that represents the *b*-th year, b = 1, ..., 120, before the territory flow.

We report the estimated coefficients of $DUMb_{ijt}$ and $DUMa_{ijt}$ in the first (second) row of **Figure 2**. That is, the first (second) row is for years before (after) having a territory flow. As discussed in Section 4.3, territory flows and goods flows can be merged using two opposite alignments. Exporters lose (gain) territories in the left (right) column. The two columns and two rows formulate four panels in total, which cover all possible combinations between the pairs that have both flows over time. In each panel of the figure is the locus of a bar against the year indicators. The midpoint of the bar represents the mean of $DUMb_{ijt}$ or $DUMa_{ijt}$, and the two ends of the bar represent the 5th and 95th percentiles. We limit the reported estimates to those significant at least at the 5% level; that is, blank areas in the plots correspond to year-indicator estimates that are not significantly different from zero. We mark the trade ratio r = 1 as the baseline in every panel.

Figure 2 demonstrates three patterns. First and foremost, trade flows decline after having a territory flow, which is in line with Hypothesis 2B. Notice that involuntary territory flows may cause the diplomatic relation between two countries to deteriorate, which affects bilateral commerce negatively. Second, the subsequent decline is larger in magnitude than the antecedent rise. Apart from the different magnitudes, the rise-then-decline pattern does not differ between the two directions of goods flows. Lastly, the effect of having a territory flow on goods flows is transitory. By looking either sixty years earlier or ninety years later, one would find no noticeable effect.

The two lower panels remind us of the findings by Head et al. (2010). They find that the trade between an ex-colony and its metropole declined after the colony became a sovereign country. Unlike their study, our study investigates the country pairs where territory flows occur, with independence cases excluded on purpose. The two sides in every pair here retain their

¹⁷When there are multiple territory flows within a pair, the years after the last territory flow are defined as *after*, and the years before the first territory flow as *before*.

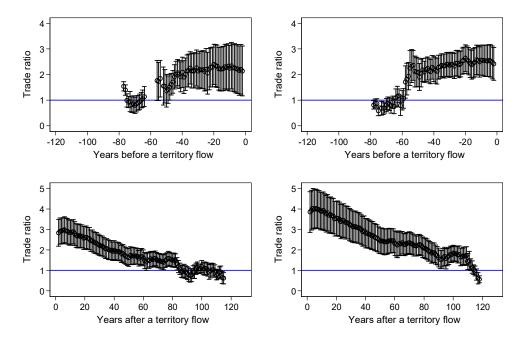
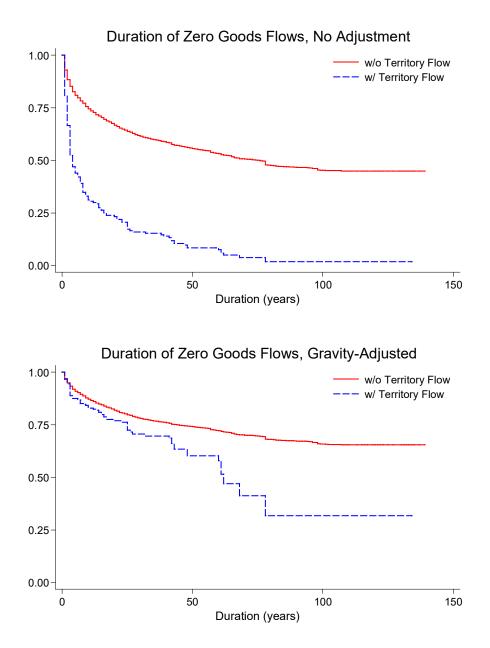


Figure 2: Trade in Goods before and after Having a Territory Flow

The first (second) row is for years before (after) having a territory flow. Exporters lose (gain) territories in the left (right) column. Trade ratio is as defined in the text. Only coefficients that are statistically significant at the 5% level or above are plotted. The midpoint (endpoints) of every bar refers to the mean (5th and 95th percentiles) of the corresponding coefficients.


sovereignty all the time, while territories flow from one side to the other. The similarity between the two studies is that both find a decline in goods flows after the territory incidents. The difference between the two studies is in the underlying mechanisms. In their case, the declining trade between the ex-colonies and their metropoles is due to the depreciation of trade-promoting capital and business networks. In our case, the declining trade between the territory gainers and losers is owing to the reoptimization of market shares in both countries.

4.5 Hypothesis 2C Results

To test Hypothesis 2C, we use the Kaplan-Meier estimator, which is a common tool in duration analysis, to estimate the duration function S(d) = Pr(D > d), defined as the probability of retaining zero goods flows for a duration time *D* longer than *d*.¹⁸ The Kaplan-Meier estimator

¹⁸As an alternative, we also use linear regressions to examine the relationship between zero goods flows and the gravity variables. The results, reported in Table A3 and discussed in Online Appendix A5, show that zero goods flows last shorter within pairs that have territory flows than within pairs that do not have territory flows.

estimates S(d) for every d non-parameterically. The estimates for the two subsamples — with and without territory flows — are plotted in the upper panel of **Figure 3**. They display two prominent patterns. One, zero goods flows decline over time for about 80 years, and become persistent after that. Two, the zero goods flows of pairs with territory flows decline faster, conforming to Hypothesis 3C.

Figure 3: Duration of Zero Good Flows

The upper panel has not adjusted for the gravity pattern. Since countries that are larger and closer to each other are also more likely to have territory flows, the distinct patterns between the two groups shown in the upper panel could be, at least partly, explained by the fact that the pairs of larger and closer countries are more likely to have both territory and goods flows. In other words, the duration of zero goods flows and the presence of territory flows are associated, at least partly, through the gravity fundamentals. The Kaplan-Meier estimates can be adjusted using the gravity variables. The adjusted S(d) is plotted against time in the lower panel of Figure 3. The zero-goods flows still last shorter between pairs that have territory flows than between pairs that do not have territory flows. The difference between the two groups of pairs is now smaller, suggesting the gravitational forces shared by the two types of zero flows.

5 Concluding Remarks

Altering the sovereignty status of territories is probably the most consequential aspect of international relations. We find that territory flows in the world between 1870 and 2008 are more likely to occur between countries that have larger sizes and that are closer to each other. Such a gravity pattern resembles the gravity pattern in international goods flows. We find three other pieces of evidence supporting that the two flows interact through similar economic motives. This study illustrates that the gravity model in the international trade literature is more versatile than one might expect. It may lead to a unified framework of a more broadly defined international economics.

This study treats the world as a large-scale exchange economy, where territories are symmetric hoarders of endowment goods. This setting is informed by the contest for critical resources and industrial inputs during our sample period. The assumption of symmetric territories stems from our interest in territory-hosting countries and the fact that territory-level details are unavailable in our data. As the recent GIS technologies make high-resolution historical maps digitizable, the empirical investigation can be extended to incorporate asymmetric territories and their flows.

References

- Aghion, Philippe, Torsten Persson, and Dorothee Rouzet (2019), "Education and Military Rivalry." *Journal of the European Economic Association*, 17, 376–412.
- Alesina, Alberto and Bryony Reich (2015), "Nation Building." Working Paper.
- Alesina, Alberto and Enrico Spolaore (1997), "On the Number and Size of Nations." *Quarterly Journal of Economics*, 112, 1027–56.
- Alesina, Alberto and Enrico Spolaore (2005), "War, Peace, and the Size of Countries." *Journal of Public Economics*, 89, 1333–1354.

- Alesina, Alberto and Enrico Spolaore (2006), "Conflict, Defense Spending, and the Number of Nations." *European Economic Review*, 50, 91–120.
- Alesina, Alberto, Enrico Spolaore, and Romain Wacziarg (2000), "Economic Integration and Political Disintegration." *American Economic Review*, 90, 1276–1296.
- Alesina, Alberto, Enrico Spolaore, and Romain Wacziarg (2005), "Trade, Growth and the Size of Countries." In *Handbook of Economic Growth (vol. 5)* (Philippe Aghion and Steven Durlauf, eds.), 1499–1542, Elsevier.
- Alvarez, Fernando and Robert Jr. Lucas (2007), "General Equilibrium Analysis of the Eaton-Kortum Model of International Trade." *Journal of Monetary Economics*, 54, 1726–1768.
- Anderson, James E. (2011), "The Gravity Model." Annual Review of Economics, 3, 133–160.
- Anderson, James E. and Eric van Wincoop (2003), "Gravity with Gravitas: A Solution to the Border Puzzle." *American Economic Review*, 93, 170–192.
- Ang, James B. (2015), "What Drives the Historical Formation and Persistent Development of Territorial States?" *Scandinavian Journal of Economics*, 117, 1134–1175.
- Barbieri, Katherine, Omar M. G. Keshk, and Brian Pollins (2009), "TRADING DATA: Evaluating our Assumptions and Coding Rules." *Conflict Management and Peace Science*, 26, 471–491.
- Bates, Robert, Avner Greif, and Smita Singh (2002), "Organizing Violence." Journal of Conflict Resolution, 46, 599–628.
- Besley, Timothy and Torsten Persson (2009), "The Origins of State Capacity: Property Rights, Taxation, and Politics." *American Economic Review*, 99, 1218–44.
- Bonfatti, Roberto (2017), "The Sustainability of Empire in a Global Perspective: the Role of International Trade Patterns." *Journal of International Economics*, 108, 137–156.
- Brennan, Geoffrey and James M. Buchanan (1980), *The Power to Tax: Analytic Foundations of a Fiscal Constitution*. Cambridge University Press.
- Cameron, A. Colin and Pravin K. Trivedi (2013), *Regression Analysis of Count Data (Second Edition)*. Cambridge University Press.
- Carneiro, Robert L. (1970), "A Theory of the Origin of the State." Science, 169.
- Cheung, Tai Ming (1998), "Hong Kong's Strategic Importance Under Chinese Sovereignty." In In China's Shadow: Regional Perspectives on Chinese Foreign Policy and Military Development (Jonathan D. Pollack and Richard H. Yang, eds.), 170–181, RAND Corporation.
- de la Sierra, Raul Sanchez (2020), "On the Origin of States: Stationary Bandits and Taxation in Eastern Congo." *Journal of Political Economy*, 128, 32–74.

- Desmet, Klaus, Michel Le Breton, Ignacio Ortuño-Ortín, and Shlomo Weber (2011), "The Stability and Breakup of Nations: a Quantitative Analysis." *Journal of Economic Growth*, 16, 183–213.
- Eaton, Jonathan and Samuel Kortum (2002), "Technology, Geography, and Trade." *Econometrica*, 70, 1741–1779.
- Friedman, David (1977), "A Theory of the Size and Shape of Nations." *Journal of Political Economy*, 85, 59–77.
- Gartzke, Erik and Dominic Rohner (2011), "The Political Economy of Imperialism, Decolonization and Development." *British Journal of Political Science*, 41, 525–556.
- Grossman, Herschel I. and Murat F. Iyigun (1995), "The Profitability of Colonial Investment." *Economics and Politics*, 7, 229–241.
- Grossman, Herschel I. and Murat F. Iyigun (1997), "Population Increase and the End of Colonialism." *Economica*, 64, 483–93.
- Haycox, Stephen W. (2002), Alaska: An American Colony. University of Washington Press.
- Head, Keith and Thierry Mayer (2014), "Gravity Equations: Workhorse, Toolkit, and Cookbook." In *Handbook of International Economics* (Elhanan Helpman, Kenneth Rogoff, and Gita Gopinath, eds.), 131–195, Oxford.
- Head, Keith, Thierry Mayer, and John Ries (2010), "The Erosion of Colonial Trade Linkages after Independence." *Journal of International Economics*, 81, 1–14.
- Helpman, Elhanan, Marc Melitz, and Yona Rubinstein (2008), "Estimating Trade Flows: Trading Partners and Trading Volumes." *Quarterly Journal of Economics*, 123, 441–487.
- Hobbes, Thomas (1651), Leviathan. Clarendon Press, Oxford.
- Hobson, John A. (1902), Imperialism: A Study. James Pott and Company.
- Iyigun, Murat, Nathan Nunn, and Nancy Qian (2017), "Winter is Coming: The Long-Run Effects of Climate Change on Conflict, 1400-1900." NBER Working Paper 23033.
- Jaroslav, Tir, Philip Schafer, Paul Diehl, and Gary Goertz (1998), "Territorial Changes, 1816-1996: Procedures and Data." *Conflict Management and Peace Science*, 16, 89–97.
- Martin, Philippe, Thierry Mayer, and Mathias Thoenig (2008), "Make Trade Not War?" *Review of Economic Studies*, 75, 865–900.
- Marx, Karl (1867, 1885, 1894), Capital. Verlag von Otto Meisner.
- McFadden, Daniel (1974), "Conditional Logit Analysis of Qualitative Choice Behavior." In *Frontiers in Econometrics* (P. Zarembka, ed.), Academic Press.

Ricardo, David (1817), On the Principles of Political Economy and Taxation. John Murray.

- Silva, J. M. C. Santos and Silvana Tenreyro (2006), "The Log of Gravity." *Review of Economics and Statistics*, 88, 641–658.
- Smith, Adam (1776), *An Inquiry into the Nature and Causes of the Wealth of Nations*. W. Strahan and T. Cadell, London.
- Tilly, Charles (1985), "Bringing the State Back." In *War Making and State Making as Organized Crime* (Peter Evans, Dietrich Rueschemeyer, and Theda Skocpol, eds.), Cambridge University Press.

Train, Kenneth (2003), Discrete Choice Methods with Simulation. Cambridge University Press.

A Tale of Two Gravities Online Appendices (Jason H. Bowman, Xiaoping Chen, and Ben G. Li)

A1. Derivation of Equation (2)

By equation (1), the demand function at territory $v' \in N_i$ for territory $v \in N_i$'s good is

$$x_{vv'} = \frac{(t_{vv'} p_v)^{-\sigma} h_{v'}}{P_{v'}^{1-\sigma}} = \frac{(t_{ij} p_v)^{-\sigma} h_{v'}}{P_{v'}^{1-\sigma}},$$
(A.1)

where $h_{v'}$ is the expenditure of territory v' and $P_{v'}$ is the local price index at territory v'. Since domestic trade is costless, the trade cost between territory $v \in N_i$ and territory $v' \in N_j$ equals t_{ij} , which does not vary across territories within either country. Thus, $P_{v'}$ applies to every other territory in country j:

$$P_{v'}^{1-\sigma} = P_j^{1-\sigma} \equiv \sum_{v \in N} (t_{i(v)j} p_v)^{1-\sigma},$$
(A.2)

where i(v) represents the distance between country *i* (where territory *v* is located) and country *j*.

On the origin side, territory v's income q_v and the local (domestic) price of its goods satisfies

$$p_v^{1-\sigma} = p_i^{1-\sigma} \equiv \frac{q_v}{q} \times \frac{1}{\Pi_v^{1-\sigma}},\tag{A.3}$$

where $q \equiv \sum_{v' \in N} q_{v'}$ denotes the world's total income and

$$\Pi_{v}^{1-\sigma} = \Pi_{i}^{1-\sigma} \equiv \sum_{v' \in N} \left(\frac{t_{vv'}}{P_{j}}\right)^{1-\sigma} \frac{h_{v'}}{q} = \sum_{v' \in N} \left(\frac{t_{ij}}{P_{j}}\right)^{1-\sigma} \frac{h_{v'}}{q}.$$
(A.4)

Notice that the p_v in equation (A.3) does not vary across territories within country *i*, though it varies across countries. As all territories have the same quantity of endowments, q_v does not vary within country *i*, and as a result neither does h_v . Define

$$q_i = q_v$$
 for any $v \in N_i$,
 $h_i = h_v$ for any $v \in N_i$.

They represent every territory's affluence level in country *i*, measured by income and expenditure, respectively. Keep in mind that they are territory-level variables despite the fact that their subscripts are country indexes. They just do not vary across territories within a country.

Combining equations (A.1) and (A.3), we obtain the (value of) goods flows from territory $v \in N_i$ to territory $v' \in N_j$:

$$p_{v}x_{vv'} = \frac{q_{i}h_{j}}{q} \left(\frac{t_{ij}}{\Pi_{i}P_{j}}\right)^{1-\sigma}.$$
(A.5)

By aggregating equation (A.5) across all territories in the two countries, we obtain equation (2):

$$X_{ij} = \sum_{v \in N_i} \sum_{v' \in N_j} p_v x_{vv'} = N_i \times N_j \times t_{ij}^{1-\sigma} \times \frac{q_i h_j}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}.$$

A2. Derivations of Equations (6) and (10)

Equation (6). Recall $v \in N_i$ and $v' \in N_i$. For the out-politician of territory v,

$$e^{\ln m_{vv'}^{out}} = \frac{\left(\frac{t_{ij}}{P_j}\right)^{1-\sigma} \frac{h_j}{q}}{\prod_i^{1-\sigma}},$$
(A.6)

which follows from equation (3). Thus,

$$\sum_{v' \in N} e^{\ln m_{vv'}^{out}} = \frac{1}{\prod_{i}^{1-\sigma}} \sum_{v' \in N} \left(\frac{t_{ij}}{P_j}\right)^{1-\sigma} \frac{h_j}{q} = 1,$$
(A.7)

where the second equality stems from the $\Pi_i^{1-\sigma}$ in equation (A.4).

Now, by equations (4) and (5), the (outbound) probability of territory v joining territory v' is

$$\operatorname{Prob}^{out}(Z_{vv'}=1) = \int_{s=-\infty}^{\infty} \left(\prod_{u \neq v'} e^{-e^{s+\ln m_{vv'}^{out} - \ln m_{vu}^{out}}} \right) e^{-s} e^{-e^{-s}} ds = \frac{e^{\ln m_{vv'}^{out}}}{\sum_{v' \in N} e^{\ln m_{vv'}^{out}}}.$$
 (A.8)

With equations (A.6) and (A.7) inserted, equation (A.8) becomes

$$\operatorname{Prob}^{out}(Z_{vv'}=1) = t_{ij}^{1-\sigma} \times \frac{h_j}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}.$$

Equation (10). By equations (4) and (5), the (inbound) probability of territory v' in country j obtaining territory v in country i is

$$\operatorname{Prob}^{in}(Z_{vv'}=1) = \int_{s=-\infty}^{\infty} \left(\prod_{u \neq v} e^{-e^{s+\ln m_{vv'}^{in} - \ln m_{uv'}^{in}}} \right) e^{-s} e^{-e^{-s}} ds, \tag{A.9}$$

$$= \frac{e^{\ln m_{vv'}}}{\sum_{v \in N} e^{\ln m_{vv'}^{in}}} = \frac{(p_v t_{vv'})^{1-\sigma}}{\sum_{v \in N} (p_v t_{vv'})^{1-\sigma}} = p_v^{1-\sigma} \frac{t_{vv'}^{1-\sigma}}{P_i^{1-\sigma}}.$$
 (A.10)

Note that in the last line, the second equality follows from the $m_{vv'}^{in}$ equation (9), and the third equality from the $P_j^{1-\sigma}$ in equation (A.2). With the $p_v^{1-\sigma}$ in equation (A.3) inserted into equation (A.10), we have

$$\operatorname{Prob}^{in}(Z_{vv'}=1) = t_{ij}^{1-\sigma} \times \frac{q_i}{q} \times \frac{1}{\prod_i^{1-\sigma}} \times \frac{1}{P_j^{1-\sigma}}.$$

A3. Robustness of Our Model in Section 2.1

Our model of two gravities, although stylized, is robust and flexible in several ways. First, the two competing politicians of every territory are metaphorical, representing two opposing economic interests in an economy. They do not have to be political figures who compete under a democratic regime to win a public office. The winner between them can be replaced by a *de facto* power that controls the territory, such as a warlord, a colonist, a populist leader, or some monopoly in the local economy, as long as this de facto power has economic interests in either imports or exports. The model also has a degenerate version where only the out-politician or only the in-politician exists. For example, only the out-politician exists if the territory is seeking independence (discussed below), while only the in-politician exists if the territory is currently uninhabited. The degeneration makes little difference because the resulting total flow (equation (12)) would then be either equation (7) or equation (11), maintaining a similar gravity-with-gravitas form.

Second, in the above model, out-politicians are allowed to let their territories join domestic territories, ending up with no change to the sovereignty status of their territories. Similarly, in-politicians can choose to bring in domestic territories and thus do not incorporate any foreign territory. In fact, considering the market shares in equations (3) and (9), both the in-politician and the out-politician have more interests in their domestic markets than in foreign markets. Such muted outcomes (in the sovereignty sense) may take the form of domestic political coalitions or other domestic political deals. They are not recorded in the data, even though their domestic effects have been taken into account by our framework.

Third, one may consider territories of a country as a national (i.e. country-level) issue rather than a local (i.e. territory-level) issue. Notice that any country *j* in our setup is no more than a set of trade costs $\{t_{ij}\}_{i=1}^{J}$. Every territory has a positive probability of leaving its current country for a foreign country, such that the notion of a country is transitory here. This might be a disadvantage from a political economy perspective, since such "hollow" countries do not provide public goods other than a unified domestic markets. However, it is an advantage from an international economics perspective because the countries' political regimes do not matter thanks to the hollowness of countries. The analysis here is neutral to the diversity of political regimes in the world.

Fourth, one may think countries that industrialized earlier might have more in-politicians, alluding to unequal probabilities of winning of the two politicians such as $\frac{(1-\theta)q_i+\theta h_j}{q}$ in equation (12), where $0 < \theta < 1$ represents the relative hegemonic tendency of an affluent country *j*. On the one hand, we are aware of this possibility and control for industrialization levels of both sides in our empirical study. On the other, countries that expanded earlier to colonize more territories would lose more territories once their domestic markets become inadequate to sustain their country sizes.¹ This is largely witnessed by the blossom of new countries in the second half

¹A detailed discussion on the relationship between the political endorsements of a given country by its territories

of the 20th century, when many colonies of earlier Western powers sought for independence. This being said, although we address this possibility in our empirical study, we do not think there is a necessary relation between affluence and territory inflows.

Last, the above model can be extended to analyze the motives for territories to seek independence from their current countries. Economic motives could be found behind many independence movements in history. In that case, the territory v and some of its peers in country ichoose to join a previously nonexistent country that did not previously exist. Independence is beyond the scope of this study, because this study focuses on existing countries on the two sides of territory flows. Newly independent countries do not have ex-ante sizes and trade costs, and therefore we exclude them from this study.

A4. Additional Data Details

The CEPII dataset, compiled by Head, Mayer, and Ries (2010), is widely used in the empirical trade literature. It provides geographic coordinates of countries, their bilateral distance from each other, and whether they share languages, legal origins, or borders (henceforth, pair-level controls). The CEPII dataset covers the time period 1948-2015. If a country exists in both the JSDG dataset and the CEPII dataset, we use its bilateral distance and pair-level controls with other countries for the 1948-2008 period in the CEPII dataset as its values for the entire 1870-2008 sample period.² If a country exists in the JSDG dataset but not in the CEPII dataset (referred to here as a "JSDG country"), we calculate the JSDG country's bilateral distance from other countries using the geographic coordinates of its capital city and the capital cities of other countries.³ To obtain the JSDG country's pair-level controls with others, we identify the JSDG country's later counterpart (referred to here as a "counterpart country") in the CEPII dataset by finding the country that continued the JSDG country's political power. We use the counterpart country's pair-level controls with other countries in the CEPII data as the JSDG country's pair-level controls with other countries. The National Material Capabilities dataset (version 4), compiled by ?, is part of the aforementioned COW Project. It has been continuously updated since 1987, providing data on population and industrialization (iron & steel production and primary energy consumption). Its coverage spans longer than the 1870-2008 period and thus has no data merge issue.

A5. Additional Results for Hypothesis 3C

Given a panel dataset at the country pair-year level, not all zero goods flows within a country pair last over time. To explore the distribution of zero goods flows across country pairs, we first count the number of zero goods flows within each pair. Likewise, we also count the number

and the territory-level overseas economic interests can be found in ?.

²Moving from the 1870-1947 period to the 1948-2008 period, the bilateral distance and pair-level controls within given pairs of countries might change. We find significant changes to be rare.

³The geographic coordinates of capital cities are extracted from either the CEPII dataset (if available) or historical maps (????). The calculation is conducted with the WGS 1984 reference ellipsoid.

of zero territory flows within each pair. Table A3 demonstrates the correlation between the two types of zero flows, as explained below.

Panel A in Table A3 uses the universe of pair-year combinations. The dependent variable is an indicator of zero goods flow (which equals 1 if the goods flow within a pair in a year is zero). The regressors include the gravity-related variables used earlier, and an indicator of territory flow that equals 1 if the territory flow within a pair in a year is zero. Conceivably, the indicator of zero territory flow equals 1 most of the time. This is because both (i) country pairs without territory flows and (ii) the idle years of country pairs with territory flows are included in the sample. Again, as territory flows and goods flows can be merged using two opposite alignments, we report both sets of results. Goods-exporters have outbound territory flows (i.e. losing territories) in columns (1) and (3), and have inbound territory flows (i.e. gaining territories) in columns (2) and (4).

Two observations emerge from Panel A, which are in line with our expectation. First, the estimated coefficients of country sizes and distance are opposite of their counterpart signs in gravity regressions, because having zero goods flows is the opposite of having positive goods flows. Second and more importantly, country pair-year combinations that have zero territory flows are more likely to have zero goods flows, suggesting a lack of economic interests in each other. To use these variations more conservatively, we aggregate the numbers of zeros at the country pair-year level to the country pair level. That is, we use cross-sectional data instead of panel data to rerun the regressions in Panel A. The results are reported in Panel B, where the same association is obtained just as in Panel A. Aggregating the numbers of zeros using different subperiods makes no difference.

References (for Appendices)

Barraclough, Geoffrey (1994), The Times Atlas of World History (4th ed.). BCA London.

- Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2011), "Robust Inference With Multiway Clustering." *Journal of Business & Economic Statistics*, 29, 238–249.
- Head, Keith, Thierry Mayer, and John Ries (2010), "The Erosion of Colonial Trade Linkages after Independence." *Journal of International Economics*, 81, 1–14.
- Lan, Xiaohuan and Ben G. Li (2015), "The Economics of Nationalism." *American Economic Journal: Economic Policy*, 7, 294–325.
- McNally, Rand, ed. (1992), Atlas of World History. Rand McNally.
- McNally, Rand, ed. (2015), New Historical Atlas of the World. Rand McNally.
- Overy, Richard (2010), The Times Complete History of the World. Times Books.

Singer, J. David (1987), "Reconstructing the Correlates of War Dataset on Material Capabilities of States, 1816-1985." *International Interactions*, 14, 115–32.

(Additional tables start at next page)

Country i	Country j	JSDG ID*	Country i	Country j	JSDG ID	Country i	Country j	JSDG ID
United States	Mexico	726	United Kingdom	Liberia	436	Germany	France	481,482,478,480,479
United States	Honduras	777	United Kingdom	Ghana	679	Germany	Portugal	483
United States	Nicaragua	765	United Kingdom	Cameroon	711	Germany	Poland	484,539,592
United States	Panama	812	United Kingdom	Nigeria	712	Germany	Russian Fed	597
United States	Colombia	822	United Kingdom	Somalia	707	Germany	Denmark	517
United States	Netherlands	555	United Kingdom	Seychelles	806	Germany	South Africa	494
United States	Japan	655,756,780	United Kingdom	Egypt	675	Germany	Japan	456,522
Mexico	France	560	United Kingdom	Oman	752	Germany	Australia	495,524
Nicaragua	United States	459	United Kingdom	China	559,871	Germany	New Zealand	526
Nicaragua	Honduras	688	United Kingdom	Australia	623,668,687	German Fed Rep	Netherlands	634
Panama	United States	400	United Kingdom	New Zealand	551	German Fed Rep	France	613
Panama	Costa Rica	528	Netherlands	United Kingdom	204	German Dem Rep	Germany	837
Colombia	Brazil	419	Netherlands	German Fed Rep	727	Baden	Germany	207
Venezuela	Colombia	536	Netherlands	Indonesia	734	Wuerttemburg	Germany	208
Venezuela	United Kingdom	383	Belgium-Luxembourg	United Kingdom	429	Poland	Germany	538
Ecuador	Peru	589	Belgium-Luxembourg	France	347	Poland	Czechoslovakia	506
Ecuador	Brazil	406	Belgium-Luxembourg	Portugal	284,334,553	Poland	Russian Federation	598,651
Peru	Colombia	565	Belgium-Luxembourg	German Fed Rep	669	Austria	Germany	573
Peru	Chile	262	France	Mexico	360	Austria	Poland	485
Brazil	Bolivia	403	France	United Kingdom	372	Austria	Hungary	531
Bolivia	Peru	426	France	Spain	461	Austria	Yugoslavia	492
Bolivia	Brazil	402,420	France	Germany	206,435,569	Hungary	Czechoslovakia	507,594,614
Bolivia	Paraguay	568	France	German Fed Rep	677	Hungary	Yugoslavia	510
Bolivia	Chile	265	France	Italy	488,566,570	Hungary	Romania	512
Paraguay	Brazil	200,351	France	Morocco	432	Czechoslovakia	Germany	574,577
Paraguay	Argentina	201	France	Turkey	583	Czechoslovakia	Poland	503,575
Chile	Peru	557	France	India	648,660	Czechoslovakia	Hungary	576,579
Chile	Argentina	255,395	France	Thailand	411,424	Czechoslovakia	Russian Fed	599
Argentina	Paraguay	232	Spain	Germany	388	Czech Republic	Slovakia	870
Argentina	Chile	254,394	Spain	Mauritania	804	Slovakia	Czechoslovakia	595
United Kingdom	United States	212,399	Spain	Morocco	671,682,760,807	Slovakia	Czech Republic	869
United Kingdom	Canada	628	Portugal	Belgium-Luxembourg	333,552	Italy	United Kingdom	361
United Kingdom	Venezuela	380	Portugal	Benin	709	Italy	France	612
United Kingdom	Belgium-Luxembourg	418,431	Portugal	China	878	Italy	Albania	615
United Kingdom	France	375,407,408,410	Portugal	India	717	Italy	Yugoslavia	509,546,616
United Kingdom	Portugal	223	Portugal	Indonesia	809	Italy	Greece	617
United Kingdom	Germany	329,330,387	Bavaria	Germany	209	Italy	Egypt	549
United Kingdom	Italy	337,545	Germany	United Kingdom	325,381,382,474,475	Papal States	Italy	203
United Kingdom	Greece	447	Germany	Belgium-Luxembourg	476,543,635	Albania	Italy	453,581
United Kingdom	Norway	556	Germany	Luxembourg	477,636	Yugoslavia	Austria	505

 $\mathbf{\nabla}$

Table A1: List of Territory Flows (For Online Publication Only)

Country i	Country j	JSDG ID*	Country i	Country j	JSDG ID	Country i	Country j	JSDG ID
Yugoslavia	Italy	508,544	Ethiopia	United Kingdom	362,396	Yemen Arab Rep.	Saudi Arabia	567
Greece	Albania	454	Ethiopia	Italy	571	Yemen	Oman	859
Greece	Turkey	364	Ethiopia	Egypt	248	Yemen People's Rep.	Yemen Arab Republic	778
Cyprus	Turkey	789	South Africa	Namibia	865	Yemen People's Rep.	Yemen	836
Bulgaria	Yugoslavia	442,491	Swaziland	United Kingdom	326	Kuwait	United Kingdom	384
Bulgaria	Greece	445,493	Madagascar	France	280,359	Kuwait	Saudi Arabia	761
Bulgaria	Romania	450	Comoros	France	803	Qatar	United Kingdom	460
Moldova, Rep.	Ukraine	873	Morocco	France	405,422,437	Qatar	Turkey	213
Romania	Bulgaria	584	Morocco	Spain	438	United Arab Emirates	United Kingdom	336
Romania	Russian Federation	245,618	Tunisia	France	257	Oman	Yemen	858
Russian Fed	Poland	530,650	Libyan Arab Jamahiriya	a France	664	Oman	Pakistan	686
Russian Fed	Romania	511	Sudan	United Kingdom	385	Afghanistan	United Kingdom	227,338
Russian Fed	Estonia	876	Sudan	Egypt	880	Afghanistan	Russian Fed	353
Russian Fed	Lithuania	582	Turkey	United Kingdom	233,377,417,498,499	Turkmenistan	Russian Fed	228
Russian Fed	China	260,413,868,887	Turkey	France	502	Kyrgyzstan	Russian Fed	216
Russian Fed	Japan	226,414,415,676	Turkey	Yugoslavia		Kazakstan	China	872
Estonia	Russian Federation	585,875	Turkey	Greece	258,446,448	China	Russian Fed	210,376,392
Latvia	Russian Federation	586	Turkey	Bulgaria	449	China	Japan	354,562,564,572
Lithuania	Germany	578	Turkey	Romania	243	China	Pakistan	730
Lithuania	Poland	504	Turkey	Russian Federation	246,532	China	Nepal	718
Lithuania	Russian Fed	587	Turkey	Saudi Arabia	451	Taiwan	China	667
Ukraine	Moldova, Repof	874	Iraq	Saudi Arabia	800	Korea	Japan	416
Ukraine	Russian Fed		Iraq	Kuwait	864	Japan	United States of Americ	591,611
Armenia	Russian Fed	513	Egypt	United Kingdom		Japan	Russian Fed	224,600
Georgia	Russian Fed		Egypt	Italy		Japan	China	541,601,602
Azerbaijan	Russian Fed		Egypt	Ethiopia		India	Bhutan	644
Finland	Russian Fed		Egypt	Israel	748	India	Pakistan	646,685,758,775,782
Sweden	Finland		Syrian Arab Rep.	Egypt	683	India	Bangladesh	860
Denmark	United States		Syrian Arab Rep.	Israel	749,785	India	Sri Lanka	791
Mauritania	Morocco	820	Jordan	Israel		Bhutan	United Kingdom	430
Burkina Faso	Mali	833	Jordan	Saudi Arabia		Pakistan	India	643,684,757,774,781
Liberia	United Kingdom	433	Israel	Egypt	639,790,799,817,834		United Kingdom	291
Cameroon	Nigeria	882		Syrian Arab Republic		Myanmar	China	716
Nigeria	Cameroon	883,886		Jordan		Maldives	United Kingdom	298
Chad	Libyan Arab Jamahiriya	784	Saudi Arabia	Iraq		Thailand	United Kingdom	427
Zanzibar	United Kingdom		Saudi Arabia	Jordan		Thailand	France	409,423
Zanzibar	Portugal		Saudi Arabia	Yemen		Lao People's Dem	France	342
Zanzibar	Germany		Saudi Arabia	Kuwait		Republic of Vietnam	Viet Nam	801
Zanzibar	Italy	322	Yemen Arab Republic			Brunei Darussalam	United Kingdom	306
Zanzibar	Tanzania, United Rep of		Yemen Arab Republic	0	214		United Kingdom	218
Tonga	United Kingdom		Samoa	Russian Fed		Samoa	Germany	389
0	can be matched to the origin					Jantoa	Germany	369

* The JSDG IDs can be matched to the original dataset at http://www.correlatesofwar.org/data-sets/territorial-change.

 ∞

Table A2: Gravity of Goods							
	Panel	A: Full samp	le				
	(1)	(2)	(3)	(4)	(5)	(6)	
Estimation method:		OLS			PPML		
In(Population, country i)	0.549***	0.540***	0.161***	0.208***	0.207***	0.0566***	
	(0.0593)	(0.0602)	(0.0550)	(0.00328)	(0.00343)	(0.00380)	
ln(Population, country j)	0.526***	0.514***	0.175***	0.199***	0.197***	0.0654***	
	(0.0555)	(0.0574)	(0.0484)	(0.00336)	(0.00353)	(0.00392)	
ln(Distance)	-0.730***	-0.696***	-0.627***	-0.272***	-0.277***	-0.211***	
	(0.0692)	(0.0745)	(0.0467)	(0.00587)	(0.00692)	(0.00523)	
Pair-level controls	No	Yes	Yes	No	Yes	Yes	
Industrialization controls	No	No	Yes	No	No	Yes	
Observations	17,120	15,945	15,945	17,120	15,945	15,945	
R-squared	0.309	0.307	0.540	0.306	0.301	0.551	
	Panel	B: By period	1				
	(1)	(2)	(3)	(4)	(5)	(6)	
Sample period	1870-	-1909	1910-	-1949	1950-	-2008	
Estimation methods:	OLS	PPML	OLS	PPML	OLS	PPML	
ln(Population, country i)	0.138**	0.0733**	0.176***	0.116***	0.168***	0.0569***	
	(0.0568)	(0.0296)	(0.0605)	(0.0129)	(0.0563)	(0.00377)	
ln(Population, country j)	0.0553	0.0251	0.160***	0.105***	0.183***	0.0658***	
	(0.0717)	(0.0312)	(0.0534)	(0.0141)	(0.0501)	(0.00388)	
ln(Distance)	-0.227***	-0.116***	-0.214***	-0.149***	-0.644***	-0.210***	
	(0.0785)	(0.0318)	(0.0472)	(0.0161)	(0.0485)	(0.00520)	
Pair-level controls	Yes	Yes	Yes	Yes	Yes	Yes	
Industrialization controls	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	560	560	2,444	2,444	15,945	15,945	
R-squared	0.429	0.470	0.393	0.429	0.557	0.575	

Table A2: Gravity of Goods

Dep. variable is exports from country i to country j. It is logged except when the PPML estimation is used. Robust standard errors in parentheses (clustered using the Cameron-Gelbach-Miller (2011) method when the OLS esimation is used). *** p<0.01, ** p<0.05.

	(1)	(2)	(3)	(4)
Direction of territory flows:†	Outbound	Inbound	Outbound	Inbound
Panel A: Dep. Var	iable is the indicator of	zero goods fl	ows	
Indicator of zero in a territory flow	0.429***	0.432***	0.0327***	0.0250***
	(0.00126)	(0.00120)	(0.00179)	(0.00184)
ln(Population, country i)			-0.0854***	-0.0854***
			(0.000179)	(0.000179)
ln(Population, country j)			-0.0706***	-0.0707***
			(0.000189)	(0.000188)
ln(Distance)			0.134***	0.134***
			(0.000471)	(0.000471)
Pairwise control variables	No	No	Yes	Yes
Observations	1,541,968	1,541,968	1,365,435	1,365,435
R-squared	0.009	0.010	0.241	0.241
Panel B: Dep. Va	riable is the count of ze	ero goods flov	vs§	
Cross-se	ectionalized sample: all	periods		
Count of zero territory flows	0.257***	0.257***	0.349***	0.349***
	(0.00863)	(0.00863)	(0.00944)	(0.00944)
Observations	37,455	37,455	33,307	33,307
R-squared	0.078	0.078	0.182	0.182
Cross-se	ectionalized sample: 18	70-1909		
Count of zero territory flows	0.213***	0.213***	0.207***	0.207***
	(0.0149)	(0.0149)	(0.0167)	(0.0167)
Observations	2,462	2,462	1,858	1,858
R-squared	0.066	0.066	0.282	0.282
Cross-se	ectionalized sample: 19	09-1949		
Count of zero territory flows	0.355***	0.355***	0.342***	0.341***
	(0.00984)	(0.00984)	(0.00985)	(0.00986)
Observations	7,002	7,002	5,782	5,782
R-squared	0.158	0.159	0.320	0.319
 Cross-se	ectionalized sample: 19	49-2008		
Count of zero territory flows	0.212***	0.212***	0.353***	0.353***
-	(0.00629)	(0.00629)	(0.00674)	(0.00675)
Observations	37,171	37,171	33,307	33,307
R-squared	0.031	0.031	0.156	0.156

Table A3: Gravity of Zeros in Goods and Territory Flows

⁺ An outbound territory flow means a territory flows from a goods exporter to a goods impoer, while an inbound territory flow means a territory flows from a goods importer to a goods exporter. § Panel B uses the same regressors as Panel A. Robust standard errors in parentheses. *** p<0.01.